Eötvös Lóránd Kollégium, Szeged, 13 November 2013, 16.00

Application of remote sensing in inland excess water research

Boudewijn van Leeuwen, PhD

Szegedi Tudományegyetem Természeti Földrajzi és Geoinformatikai tanszék

Természeti Földrajzi és Geoinformatikai tanszék

DOKTORANDUSZOK

LABORATÓRIUMOK

KARRIER

FELVÉTELIZŐKNEK

HALLGATÓKNAK

ERASMUS

HALLGATÓI ÉLET

ALUMNI

KIADVÁNYOK

KONFERENCIÁK

MÉDIASZEREPLÉSEK

www.aeo.u-szeaed.hu

"Fábián Tamással a világban" - Fotókiállítás

Helyszín: SZTE Természeti Földrajzi és Geoinformatikai Tanszék, Szeged, Egyetem u. 2.

Megnyitó: 2013. november 6. 16 óra

III. JAKUCS LÁSZLÓ KÖZÉPISKOLAI FÖLDRAJZVERSENY 2013/2014

FELHÍVÁS!

A Szegedi Tudományegyetem TTIK Természeti Földrajzi és Geoinformatikai Tanszéke meghirdeti a

III. Jakucs László Középiskolai

Concerner Tard obréasser es

Contents

- Introduction
- Inland excess water theoretical background
- Mapping of inland excess water
- Artificial neural networks method
- Results

Inland access water (belvíz) problem

March 2006

Ninland excess water is a phenomenon where water temporarily remains in local depressions because of a surplus of water due to a combination of lack of runoff, insufficient evaporation and low infiltration capacity of the soil or because of upwelling of groundwater.

March 2005

ATIVIZIG: www.vizugy.hu

Types of inland excess water

- Horizontal accumulative
 - On the surface
 - Source is precipitation
 - Closed depressions
- Vertical upwelling
 - Edge of alluvial fans
 - Source is (high) ground water level
- Queuing up
 - In front of pumping stations
 - Along channels
 - Due to insufficient pumping capacity

Factors involved in inland excess water

Snatially vary

Miamalau

matro ()

10,

COMDENCE RELEVA

natura

Inland excess water = f(M,R,S,Gr,L,Ge,A,...)

- Meteorology
- Relief
- Soil
- Groundwater
- Landuse
- Geology
- Antropogenic factors

Meteorology

- Precipitation
- (Evapo-)transpiration
- Air temperature, wind speed

Relief and geomorphology

RapidEye FCC, 2011

- Very small relief difference
- Local depressions
- Former river arms

Rakonczai et al. 2011

Lithology and groundwater

Landuse

- Build up type
- Infiltration
- Run off

Other antropogenic factors

- Channels
- Pumping stations
- Levees
- Roads, rail roads

Possibilities for reduction and mitigation

and the same

The key questions:

- to *locate* inland excess water
- to understand the *formation* of the inundations
- to find the possibilities for *intervention*

Methods: 1. Vulnerability mapping

 $w_i = weight$ $T_i = factor$

Pálfai map 1:500 000

Methods: 2. In situ mapping -Field measurements

Methods: 2. RS based mapping

• Classification based on reflectance data of satellite images or digital aerial photographs

Rakonczai et al. 2001

Generation of RS based inland excess

water maps

• Remote sensing data acquisition

- Geoinformatics processing techniques
 - Index based
 - Classification based
 - Segmentation

TFGT Data collection system

Inland excess water mapping

- Field observations
 - Financial constrains
 - Time consuming
 - Error prone
- Aerial photography
 - Financial constrains
 - Time consuming
- Satellite imagery
 - Spatial resolution
 - Temporal resolution
 - Coverage

Processing of RS data

- Visual interpretation
- Indexing
- Classification
- Modelling

Index based water detection

Reclassified NDVI values derived from a MODIS satellite image (Baksa 2012). Wetness band of a Tasseled cap transformed LANDSAT image (Baksa 2012).

Traditional classifications

Landsat

• Multispectral satellite data

- ISODATA
- Box classifier
- Minimum distance
- Maximum likelihood

Artificial neural networks (ANN)

- \rightarrow Training
- \rightarrow Weights
- \rightarrow Activation
- \rightarrow Simulation
- Advantages
 - Robust
 - Non linear system
 - Huge data amounts
- Disadvantages
 - Difficult to understand what exactly happens
 - Calculation intensive

Determination of the weights is an integral part of the training

Study area

- Inland excess water occurrences
- Earlier scientific research TFGT
- Close to the local airport

Data

- Local depressions derived from LIDAR DEM
- Color InfraRed digital aerial photographs
- Anthropogenic objects
- Soil map
- Fieldwork

ANN – GIS Framework

Results

First experiment:

4 input layers. Training area (left) with the GPS fieldwork result and the simulation area (right)

Training result: R = 0.74

Simulation results – 2 different dates

24 March 2010

9 June 2010

Results

- 3 classes
 - Open water
 - Saturated soil
 - Dry land

Influence of the input layers

- A. 4 input layers
- B. 5 input layers
- C. 8 input layers
- D. 9 input layers

B

	4 inputs	5 inputs	8 inputs	9 inputs
Cohen's Kappa (ĸ)	0,76	0,81	0,86	0,83
Overall accuracy (%)	88	91	93	91

Comparison with traditional classifications

Minimum distance

Maximum likelihood

Artificial neural network

- 2 classes
- 3 input layers (CIR bands)

Maximum likelihood

- 7 osztály
- 6 non-water classes merged into one class

Results

	Correctly	Correctly	Total	Total	Overall
	classified	classified	water	non-	accuracy
	water	non-	found	water	
		water			
MD based on 2 classes	119	83	186	114	67 %
ML based on 2 classes	135	72	213	87	69 %
ML with merged non- water classes	90	120	120	180	70 %
ANN two classes (3 layers)	93	128	115	185	74 %
ANN two classes (8 layers)	149	130	169	131	93 %

Artificial neural network

- ANN 2 classes
- 20 hidden neurons
- 8 layers:
 - 3 CIR
 - Local depressions
 - Channels
 - Buildings
 - Roads
 - Wells

Thank you for your attention

Boudewijn van Leeuwen

http://www.geo.u-szeged.hu/meriexwa

This research is supported by European projects: Inland excess water INFO (GOP – 1.1.1 – 08 / 1 – 2008) – 025 and MERIEXWA (HUSRB/1002/121/088)

